Prototype Selection for Parameter Estimation in Complex Models
نویسندگان
چکیده
Parameter estimation in astrophysics often requires the use of complex physical models. In this paper we study the problem of estimating the parameters that describe star formation history (SFH) in galaxies. Here, high-dimensional spectral data from galaxies are appropriately modeled as linear combinations of physical components, called simple stellar populations (SSPs), plus some nonlinear distortions. Theoretical data for each SSP is produced for a fixed parameter vector via computer modeling. Though the parameters that define each SSP are continuous, optimizing the signal model over a large set of SSPs on a fine parameter grid is computationally infeasible and inefficient. The goal of this study is to estimate the set of parameters that describes the SFH of each galaxy. These target parameters, such as the average ages and chemical compositions of the galaxy’s stellar populations, are derived from the SSP parameters and the component weights in the signal model. Here, we introduce a principled approach of choosing a small basis of SSP prototypes for SFH parameter estimation. The basic idea is to quantize the vector space and effective support of the model components. In addition to greater computational efficiency, we achieve better estimates of the SFH target parameters. In simulations, our proposed quantization method obtains a substantial improvement in estimating the target parameters over the common method of employing a parameter grid. Sparse coding techniques are not appropriate for this problem without proper constraints, while constrained sparse coding methods perform poorly for parameter estimation because their objective is signal reconstruction, not estimation of the target parameters.
منابع مشابه
CREDIBILISTIC PARAMETER ESTIMATION AND ITS APPLICATION IN FUZZY PORTFOLIO SELECTION
In this paper, a maximum likelihood estimation and a minimum entropy estimation for the expected value and variance of normal fuzzy variable are discussed within the framework of credibility theory. As an application, a credibilistic portfolio selection model is proposed, which is an improvement over the traditional models as it only needs the predicted values on the security returns instead of...
متن کاملA Comparison between New Estimation and variable Selectiion method in Regression models by Using Simulation
In this paper some new methods whitch very recently have been introduced for parameter estimation and variable selection in regression models are reviewd. Furthermore , we simulate several models in order to evaluate the performance of these methods under diffrent situation. At last we compare the performance of these methods with that of the regular traditional variable selection methods such ...
متن کاملPrototype Selection for Parameter Estimation in Complex Models1 By
Parameter estimation in astrophysics often requires the use of complex physical models. In this paper we study the problem of estimating the parameters that describe star formation history (SFH) in galaxies. Here, highdimensional spectral data from galaxies are appropriately modeled as linear combinations of physical components, called simple stellar populations (SSPs), plus some nonlinear dist...
متن کاملReviewing the harvest index estimation in crop modeling
H Harvest index (HI), ratio of seed yield to aboveground dry matter, is a very important parameter for estimating seed yield in several crop models. In this study, the importance, definition, variability and estimation methods of HI in crop models were discussed. HI estimation methods are categorized into two groups including: (i) complex methods that estimate HI from the beginning of seed gro...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012